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Abstract— The main issue of this article is the blending of LMS training with the artificial neural network
theory for design and improvement of PID type controllers tuning. The LMS method and the neural theory
contribute for the gain adjustments and to establish the plant-activation function, respectively. Thus, the Plant-
PID dynamic system is seen as a single entity, providing the base of the proposed method for controllers design
through ANNs. The proposed method is based on a stochastic optimization structure which puts together the
target variables and its restrictions. This structure is solved according to an extension of the LMS method,
taking into account the adapting controller design of programmed type. These models form the base for the
development of logarithms to be implemented in the programmable logic controllers. The PID adaptive control
system is synthesized in industrial programmable logic controllers due to its high computing power. The gain
adjustments via LMS training is used to evaluate the DC motor speed control performance of the method.
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1 Introduction

The importance of PID Controllers can be proved
not only by its industrial application, but also by
the large amount of research documentation avail-
able in technical and scientific congress annals and
journals. It could be said that the induction mo-
tor is the industry main drive and the PID control
systems are the main structures of the industrial
controllers.

The PID controllers originally appeared in the
XXs, (Datta et al., 2000), despite of easily comply
with its digital version, its gaining tuning prob-
lem, (Yu, 1999), it still remains as a challenge for
the designer, (Pedret et al., n.d.). In industry,
the PID synthesis is associated by Programmable
Logic Controllers (PLC); these are semiconductor
devices using integrated circuits instead of elec-
tromagnetic devices to implement the control.

The PLCs general features are high logic ca-
pability and functionality, in a way that they
are able to execute instructions, such as, timing,
counting, arithmetic, communication and data
manipulation to control industrial machines and
processes (Hackworth and D.Hackworth, 2001)
and (Ioannides, 1997).

This work is formed by Sections which com-
prise the controller tuning method of differential
and integral proportional type (PID). Initially, we
have introduced the PID controller tuning, Sec-
tion 2, by means of Ziegler-Nichols, artificial intel-
ligence (AI) and linear quadratic regulator (LQR)
methods, so as to show and comment the pro-

cedures of these two trends in order to adjust
its gains. The development of the method for
PID-least mean square (PID-LMS) tuning is pre-
sented in Section 3, focus on the association of
the proposed method with the LMS gains adjust-
ment theory and with the artificial neural net-
works (ANN). In Section 4, gain-scheduling PID
design is developed in terms of PID tuning so as
to improve the control system performance, which
are designed for a Direct Current (DC) servomo-
tor speed control. The technical feasibility as-
sessment for adapting PID implementation of pro-
grammable gain is discussed in real time for PLC,
Section 5, the adaptive PID programmable gain
algorithm is synthesized in a ladder language di-
agram. The conclusions and trade-offs are dis-
cussed in the last section. The servomotor board
data and PLC are addressed in Appendix A.

2 PID controller Tuning

Due to its control actions, the PID controller has
been surviving to radical technological advances
in the 20th century. This can be proved in (Datta
et al., 2000) who considers PID the most impor-
tant thing when it comes to industrial processes.
Until 2000, (Yu, 1999), 90% of the controllers in
industrial processes were the PID type and per-
formed PI. The need for its use until the end
of the 20th is represented by the investigation of
new method of PID synchronization. The authors
stress the controller deficiency in terms of the in-
dustrial sectors classification and the internal hi-



erarchy in terms of operational behavior associ-
ated with project value figures and/or gain ad-
justments.

The PID controllers’ adjustments have been
done by methods based on time and frequency.
The time approach considers the dynamic system
stimulated by degrees or pulses and, according to
the process response particularities, the process
standard parameters are calculated. These tests
are conducted using open or close filter, as the
first is sensible to load disturbances and the lat-
ter represents time reduction. The chosen con-
trollers provoke oscillations in the responses. As
a consequence, the process is close to a lessen be-
havior. The most common method is the Ziegler-
Nichols, (Yu, 1999), and is considered as an ex-
perimental type that uses a identification systems
theory/procedures for gain adjustment.

Other methods used to perform gains adjust-
ments are based on artificial intelligence (AI) and
linear quadratic regulator (LQR). The artificial
neural networks, (Kato et al., 2005) and (MYao
Zhang Sen, 1995), genetic algorithms, (Herrero
et al., 2002), and fuzzy logic, (Kim, 2001) are the
new approaches developed to tune the gain of PID
controllers family.

2.1 LQR Adjustment

The LQR controller adjustment method devel-
oped by (Ferreira et al., 2003) has as base, the
location of auto structures and genetic algorithms.
The PID tuning against the artificial neural net-
work is represented as a proposal for the gain
determination. The tuning of the LQR optimal
controller is developed in patterns in the space of
the dynamic system condition. The tuning of its
controllers has been explored. These values uses
approximate changes in potential series that are
derived from an LQR canonic formulation. Re-
cent results certify the viability for the controllers’
synthesis by an optimum controller technique, not
only for gain adjustments but for the LQR robust
filter recover, after the insertion of state observers.
The main suggestions proposed by these authors
are models of evolutionary computation of genetic
algorithm type.

3 PID-LMS Tuning

The PID controller gain adjustment is based on
a neural structure of perceptron type of Figure 1,
the error signal is pre processed, the linear com-
biner representing PID gain structure and activa-
tion function that represents the drive. The gain
adjustment is seen as a neural unit in the Rosen-
blat sense that is performed by the LMS method.

The adaptive adjustment mechanisms has its
foundations in the recursive least squares (RLS)

1

∫

d

dt

wp

wI

wD

∑ ∑
Motor

uref eerr

xP

xI

xD

Real World

System

ysisActivation

FunctionPre-Processing Linear Combiner

uc

y

Artificial Neural Network

1

Figure 1: General Diagram representing the PID-
Plant-ANN.

family. Specifically, the LMS method to minimize
feedback errors.

mine = E{(uref (t)− y(t))2} (1)
sa

wPL < wP < wPU (2)
wIL < wI < wIU

wID < wD < wDU

The Wiener-Hopt equations, (Haykin, 1994),
for PID gain adjustment,

ωP Γx(P, P ) + ωIΓx(I, P ) + ωDΓx(D, P ) = Γxref (P )

ωP Γx(P, I) + ωIΓx(I, I) + ωDΓx(D, I) = Γxref (I)

ωP Γx(P, D) + ωIΓx(I, D) + ωDΓx(D, D) = Γxref (D).

(3)

where Γj,kis the the auto-correlation function of
the proportional, integral and derivative errors
signals. Γxφ(x) is the function of the correlation
between the reference value and the PID time in-
put signal. Figure 2 shows the LMS adaptive con-
troller.

Figure 2: Adaptive LMS Controller
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where ωP , ωI , ωD are the PID controller gains
that are adjusted every interval ∆t. The cross
variances are symmetric,

ωOP ΓPx + ωOIΓIx + ωODΓDx = Γx, (5)

where ΓPx, ΓIx and ΓDx are the stochastic basis
vectors that generates the command signal uc(t),

uc(t) = ω̂P (t)xP (t) + ω̂I(t)xI(t) + ω̂D(t)xD(t)
(6)

where xP (t), xI(t) and xD(t) are the neuronal in-
puts that are weighted by ω̂P (t), ω̂I(t) e ω̂D(t), re-
spectively. Corresponding to the PID gains, with
this purpose, it is considered that the controllers’
adjustments are performed during ∆t time inter-
vals associated with parameter variations. A set
of optimal gains are defined for several operational
conditions that are established load variations or
parameter variations.

The adaptive digital PID controller in its first
abstraction is represented by the functional units
of the PID control law,

uc =
(P,I,D)∑

i=1

ωixi, (7)

where ωi is the controller gain and xi is delayed in-
puts. The second part represents the gain adjust-
ment, (Haykin, 1994), for the design operational
conditions,

ω̂k
PID(t + 1) = ω̂k

PID(t) + ηPIDek(t)x̂k
PID(t), (8)

where ω̂k
PID is the estimation for the uk

ref opera-
tion condition, represented in Figure 2, and ηPID

is the learning rate. The Eqs (7) and (8) consti-
tute the digital controller core and the relations
between these equations.

The developed method to tune the PID con-
troller in real time, based on structure the arti-
ficial neural PID controller of Figure 3, has the
pre processing, linear combiner and LMS training
units implemented in a PLC. This implementa-
tion have performed by some researchers using on
shelf micro controllers. An implementation using
the PIC controller can be seen in (Turibe, 2006.).

The advantage of using a industrial PLC, Ap-
pendix A, are the flexibility and pre defined func-
tions, such as PID control. In the case of applica-
tions using micro controllers the the routines must
be be developed (Turibe, 2006.).
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Figure 3: LMS Adjustment Unit.

The artificial neural PID adaptive controller,
Figure 3, is established by the processing unit that
performs integration and derivation of the error
signal. The linear combiner unit gives the uc con-
trol signal that has two inputs: the signal from the
pre processing and updated weights from the LMS
training units. The activation function is based on
the control actuator model, in our case is the DC
motor.

4 Gain-Scheduling PID Design

A design methodology for the gain-scheduling con-
trollers, a type of adaptive controller, (Astrom and
Wittenmark, 1989), is presented in terms of the
PID controller tuning to support several opera-
tional conditions. These controllers are designed
to control the speed of a DC motor, with indepen-
dent excitation, based on the theory developed in
Section 3.

4.1 Digital PID Controller

The PID digital controller structure in the time
domain,

uPID
k = KP ek + KI

k−1∑

i

ek + KD
ek − ek−1

Ts

(9)

where uPID
k is the k-th control signal for interval

sampling of Ts seconds.

4.2 Plant Dynamic Model

This topic focuses on the model equations which
rules the plant behavior and are fitted for the PID
controller design. The reference (Krause et al.,
1995) shows details of the DC machines theory
focusing on the speed control. Applying Laplace
transformation in these equations,



Va(s) = RaIa(s) + LasIa(s) + KvΩr (10)
Te(s) = JsΩr(s) + bpΩr(s) + Tl. (11)

Then,

Ia(s) =
1

Ra + sLa
(Va(s)−KV Ωr(s))(12)

Ωr(s) =
1
Js

(Te − Tl − bpΩr(s)) (13)

Figure 4 shows a block diagram of the ma-
chine model. This diagram is composed by two
models: the first represents the armature and the
second represents the mechanic model. Both of
them are directly connected through an Eq. (19)
and through the re-feeder of the velocity by the
constant KV . The block diagram that represents
the armature has the following transfer function,
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Figure 4: DC Motor block diagram for PID con-
troller design.

The DC machine block diagram, Figure 4, can
be represented by transfer functions,

g1(s) =
1

Las + Ra
(14)

g2(s) =
1

Js + bp
, (15)

The armature terminal voltage equation,

Va = RaIa + La
dIa

dt
+ Ea. (16)

The armature voltage,

Ea = Kaφωr (17)
(18)

and

T = KT Ia, (19)

If TL = 0, Figure 4, is obtained easily a new
simplification for describing the DC machine as
transfer functions,

Ωr(s)
Va(s)

=
KT

JLa

s2 + (Ra

La
+ bp

J )s + Rabp+KvKT

JLa

(20)

4.3 LMS gain adjustment

Figure 5 represent the rotor speed behavior of the
DC motor for the PID first tuning controller. The
gain was obtained by try and error in order to ob-
tain a small overshot and accommodation time.
The PID can be understood as plate dates and
the motor CC values parameters contained in Ap-
pendix A.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tempo(s)

ω(
ra

d/
se

c)

Planta
Base

    
Planta

Base
−PID

Figure 5: Plant’s Behavior and Actions Perfor-
mance of the base PID Controller.

4.3.1 The Adjustment Problem

The variations of electrical, mechanical, and/or
operational parameters of the machine lead to
a performance loss. These occurrences trigger a
reduction of the equipment’s useful time due to
the stresses and caused during energizing and/or
operation. Consequently, there is a reduction
of productivity that is compromised with the
cost/benefit relation during the acquisition pro-
cess and motor commissioning to operate accord-
ing to a given scheduling.

The variations of these parameters or opera-
tion points are called Plant1, Plant2, . . ., Plantn.
In Figure 6 is illustrated the velocity behavior by
means of parametric variations in Kt, b, Ra and
Ke parameters. The design of programmable con-
trol gains, (Astrom and Wittenmark, 1989), that
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Figure 6: Actions of the base PID Controller for
Parametric Variations.

Table 1: Plant Parameter variations.
Planti Parameters

R L Kt J b

base 1 0.5 0.01 0.01 0.10

1 1.1 0.55 0.011 0.011 0.11

2 0.9 0.45 0.009 0.009 0.09

3 0.40 0.01 0.0060 0.0060 0.09

are related to the parametric variations shown in
Table 1.

The error signals of parametric variations,
Figure 7, show the divergence between the spec-
ified speed signal and the value measured in the
plant. This divergence must be corrected by the
optimization structure, Eqs. (1) and (2), due to
the PID gains.

4.3.2 LMS Training

The LMS algorithm takes into accounting the evo-
lutions of the adjustment stages in the diagrams
of Figures 2 and 3 that represent the abstractions
to obtain the error signal processing and the gain
adjustment, respectively. The LMS training for
determining the gains vector [ Kd KI KD ] is
based on the relation (8). The error of reference
and output signal of the plant, input signals of the
linear combiner, Eq. (7), and the learning coeffi-
cient ηPID must be pre-processed and evaluated
in a heuristic way.

The training is carried out off-line; the error
signals of Figure 7 are pre-processed in its propor-
tional, integral, and differential forms to satisfy
the structure of the digital PID controller, Eq. (9).
The behavior of the combiner inputs, Eq. (7), in
its proportional, integral, and differential forms to
carry out the LMS adjustment that are performed
by based on Eq. (8), are shown in Figure 8.

The learning coefficients are adjusted empir-
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Figure 7: Rotor Speed Error Signals.
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Figure 8: Input Signals for LMS Adjustment.

ically according to the values shown in Table 2.
Initially, it assumes the beginning values 1 (one)
for ηP , ηI and ηD.

The evolution of the gain training, Figure 9,
or weights show that stability was reached around
0.01 seconds, according to the LMS model, Eq.
(8).

The behavior of the velocity signal error, Fig-
ure 10, shows an exponential rate decrease rela-
tively slow to reach standard value. That is, the
accommodation and ascending times are predom-
inant, but, on the other hand, we do not have the
oscillation problems.



Table 2: LMS Method Learning Coefficients.

Plant ηP ηI ηD

ref-LMS 2.0000 30.0000 -0.0001
1 5.0000 24.0000 -0.0001
2 3.0000 28.0000 -0.0001
3 4.0000 25.0000 -0.0001
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Figure 9: Gains Evolution of the LMS Adjust-
ment.
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Figure 10: Performance of PID-LMS and reference
Controller.

In Figure 10, one has a qualitative view of the
PID controllers’ performance that are designed
through the Ziegler-Nichols (ZN) and LMS-neural
methods. The LMS accommodation and ascend-
ing times are fast as compared to ZN.

4.3.3 LMS Gains Scheduling

Table 3 shows the gains and time constants for
the PID that are adjusted according to the LMS
model, Eq. (8), that solves the optimization struc-
ture, Eqs. (1) and (2).

Table 3: PID Controllers’ Programmed Gains.

PID Project Gains

Plants KP KI KD

Base− LMS 8.0252 26.7313 0.0003

1 25.2038 64.8360 0.0004

2 15.6226 11.8956 0.0002

3 24.1028 11.9151 0.0002

By observing Figures 6 and 11, one verifies a
LMS-neural controllers’ satisfactory performance.
The comparison of LMS error, Figure 12, allows
an evaluation of the control objective.
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Controller.

5 PLC PID-LMS Real Time Design

The PLC‘s are electronic equipment used in a flex-
ible automation system. They are very useful and
versatile work tools for applications in drive and
control systems, and because of that, they are ob-
served in large scale in the industrial environment.
They allow an easily altering of the logic output
drives by virtue of the inputs, according to the
needs pointed out by the process in which it is in-
serted. Consequently, we can combine several in-
put signals to control several activators connected
to the output points. Currently, the PLC has
important characteristics that make it the most
used device for process control in industrial plants.
Some of the most relevant characteristics are de-
scribed below:

- High level programming language.
- Simplification of the electrical boards.
- Operational Confidence
- Advanced functions, including dynamic con-

trol functions and A/d and D/A conversion.
- Communication in industrial and probabilis-

tic nets.
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Figure 12: LMS Controllers Signal Errors.

In order to demonstrate the technical viabil-
ity of programmable gain adaptive PID controllers
one suggests the application in a PLC through
the synthesized control algorithm in a Ladder lan-
guage diagram. The control algorithm performs
a particular function, the self- adjustable control
system, Figure 13, and the gain values are ob-
tained from the programmable gain table. That
is, in this application, the coefficients belonging
to the PLC‘s PID block are modified according to
the LMS-neural method seen in Section 4.

Controller

Design

Controller Process

Estimator

Specification

Reference

Controller

Parameter

Input
Output

Process Parameter

Self tuning Regulator

Figure 13: Self-Adjustable Controller Block Dia-
gram.

The development of a control application in
the PLC with a PID-type controller is easily im-
plemented with the use of a logic block belonging
to the set of functions located in the PLC‘s pro-
cessing unit, besides analogical inputs and outputs
that receive process information to be controlled.

Figure 14 shows an algorithm that synthesizes

this application. In this algorithm is shown the
process used to implement the gain scheduling on
PLC. First, the gain scheduling was made off-line
using LMS-neuronal method, described in Section
4.3. The second step is an on-line procedure, us-
ing a PLC loop scan, that the input signal (from
sensors) is read and processed. According to ref-
erence read from input, like speed motor, the P,
I and D gains are selected from gain scheduling.
The last step is to process the PLC PID block and
to update the output.

In Figure 14 is shown an algorithm that syn-
thesizes this application that was used is this de-
sign. The instruction PID was implemented on
SLC 500 using the PID block; the reference, pro-
cess variable and control variable was scaled us-
ing the SCP instruction. The gain scheduling was
stored in a float data file.

Figure 14: Gain Schedulling PID-PLC Logic Dia-
gram.

6 Conclusion

In general, an artificial neural network approach
associated with the PID structure, electric drive
and plant to tune the controller gains had been
developed and evaluated in the context of design
method, control specifications and its synthesis in
a PLC.

It had been presented and discussed a method
for PID controllers’ tuning that is based on the
general RLS parameters estimation and artificial
neural networks theories. Specifically the artificial
biological approach associated with its artificial



representations, the training method is the LMS,
the PID structure is the linear combiner and the
DC drive is the activation function, in this way,
the control system (PID structure and DC drive)
is seen as a neuron of perceptron type.

The design analysis has shown satisfactory re-
sults for real world implementation of the gain
scheduling control. The synthesis of PID con-
trollers in PLCs has shown that these devices are
flexible and suitable for application on adaptive
control systems based on gain scheduling. The
LMS method as training rule can be associates a
good control results, considering the proposed op-
timization structure.

A Plate And Parameters Data

The motor and PLC are the main control equip-
ment and devices used to synthesize the control
system. The Plate and Parameters data of this
control element are shown in Table 4.

Table 4: Electric DC motor Parameters.
Parameter Value

R 1 Ω

L 0.5 H

Kt 0.01 Nm/Amp

J 0.01 kg.m2

b 0.1 N −m/rad

The PLC utilized was the SLC 500 processor
5/05 of Rockwell Automation. The program used
to develop this application were the RS Logix 500
and the RS Linx.
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